

EAG POSITION PAPER ON FUTURE R&D ACTIVITIES OF NMP FOR THE PERIOD 2010 - 2015

Professor Costas Kiparissides

Department of Chemical Engineering, Aristotle University of Thessaloniki, & Centre for Research & Technology Hellas, Thessaloniki, Greece

CPERI/AUTh

The priority R&D activities of the NMP Programme need to address the following two general issues, namely:

- Identification of research activities to support the European Industry to create new products / services and production paradigms, so that it can improve its competitiveness.
- Grand challenges in relation to Energy, Environment, Water, Food and Health related problems

Humanity's top five "Grand Challenges" for the next 50 years

- Energy
- Water
- Food
- Health
- Environment Solution Solution

The World Population 2003 6.5 billion 2050 8-10 billion

Source: Prof. R.E. Smalley, "Our Energy Challenge", Columbia University, NYC, 23 September 2003

For the preparation of the position paper, dealing with the above two issues, the following factors need to be addressed:

- 1. Present state-of-the-art in Europe and in the world in the respective field.
- 2. Required fundamental R&D activities in relation to the development of "breakthrough" technologies.
- 3. Present research priorities described in the most relevant ETPs.
- 4. Identification of the required advancements in selected industrial sectors.
- 5. Identification of possible synergies with other thematic priorities of the framework programme.
- 6. Expected impact (if possible, quantify the impact of the R&D activities in relation to an industrial sector, societal/economic impact, etc.)
- 7. Specify means for achieving the R&D objectives (EU projects, National projects, International projects, ERA-NET, etc.)
- 8. Establish appropriate performance indicators to monitor the progress of the programme and the correction/revision policies (if needed).

Future R&D Directions of NMP Programme

1. Introduction

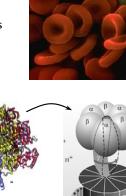
2. Nanoscience and Nanotechnology

- 2.1 Nanotechnology Products and Market Opportunities
- 2.2 Present State-of-the-Art
 - 2.2.1 Nanomaterials and Nanostructures by Design
 - 2.2.2 Manufacturing of Nanostructures, Nanocomponents and Nanosystems
- 2.3 Research Directions in Nanomaterials and Nanostuctures by Design
 - 2.3.1 Fundamental Understanding and Synthesis
 - 2.3.2 Analytical Nanotools and Measurements
 - 2.3.3 Manufacturing and Processing
 - 2.3.4 Modelling and Simulation
 - 2.3.5 Environment, Safety, and Health
 - 2.3.6 Standards and Informatics
 - 2.3.7 Dissemination, Education and Training

- Nanoscience and Nanotechnology are general terms that are employed to describe scientific and technological developments dealing with the synthesis, characterization, properties assessment and modelling as well as fabrication of functional nanomaterials, nanostructures, nanodevices and nanosystems.
- The true potential of nanotechnology is not yet exploited exhaustively.
- To overcome this and ensure that Europe will not stay behind in the global competition, a European Initiative is required that will bring together industry, research networks, NGO's at all levels for a joint movement towards a new industry.

The Scale of Things – Nanometers and More

Things Natural

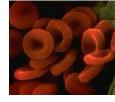


Dust mite \leftrightarrow 200 µm

Human hair ~ 60-120 µm wide

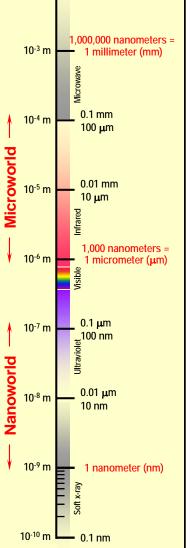
Red blood cells (~7-8 µm)

~10 nm diameter


DNA ~2-1/2 nm diameter

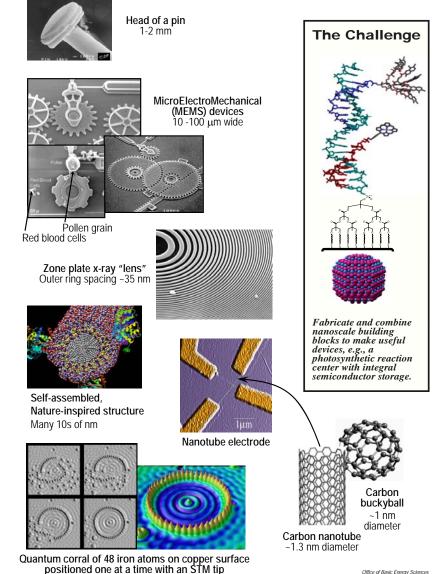


Fly ash ~ 10-20 µm



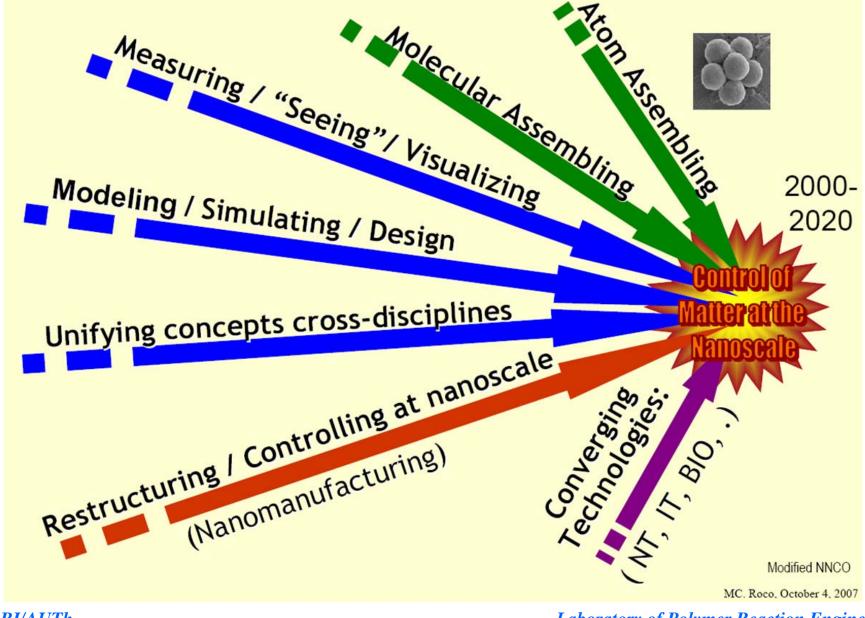
ATP synthase

spacing 0.078 nm

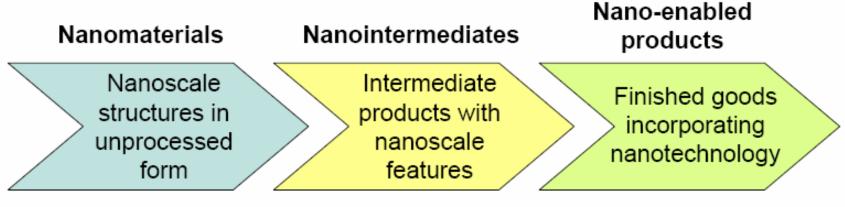


1 cm

10 mm


10⁻² m

Things Manmade


Office of Basic Energy Sciences Office of Science, U.S. DOE Version 05.26.06 pmd Corral diameter 14 nm Laboratory of Polymer Reaction Engineering

Concurrence of Nanotechnology Capabilities

CPERI/AUTh

Manotechnology Value Chain of Consumer Products

Nanoparticles, nanotubes, quantum dots. fullerenes. dendrimers, nanoporous orthopedic materials, materials...

Coatings, fabrics, memory and logic chips, contrast media, optical components, superconducting wire...

Cars, clothing, airplanes, computers, consumer electronics devices. pharmaceuticals, processed food, plastic containers. appliances...

Nanotools

Capital equipment and software used to visualize, manipulate, and model matter at the nanoscale

Atomic force microscopes, nanoimprint lithography equipment, nanomanipulators...

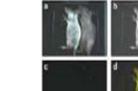
Nanotechnology Products

Nano iPod

Cosmetics

Catalysts

MacBook Air


Automotive Applications

Anti Odor / Anti Bacterial **Insoles for Shoes**

Glass **Photo / Self Cleaning**

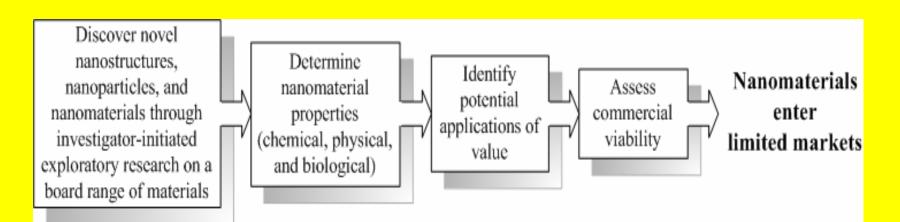
Detection of Cancerous Cells

Odorless socks

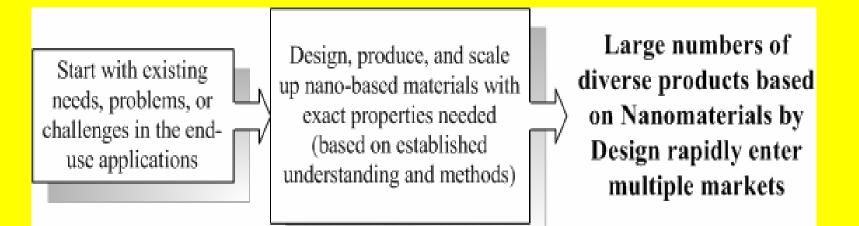
Tennis Racquet

lead Nano Titanium

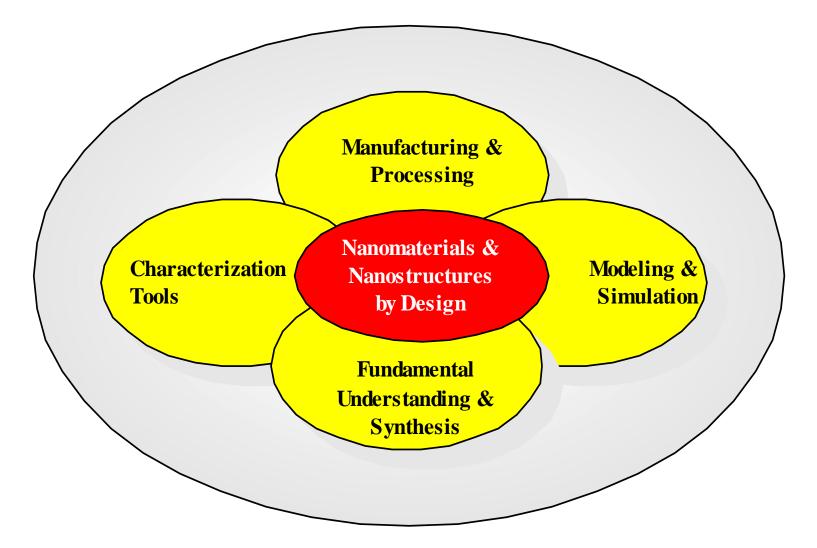
Air Purification / NanoBreeze Chocolate Chewing Gum



Laboratory of Polymer Reaction Engineering

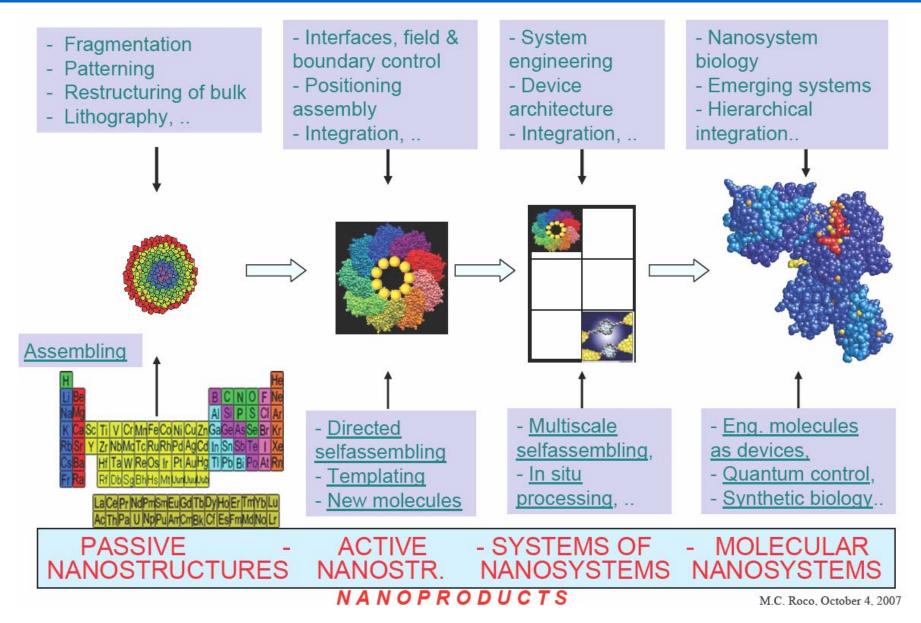

CPERI/AUTh

Present State of the Art

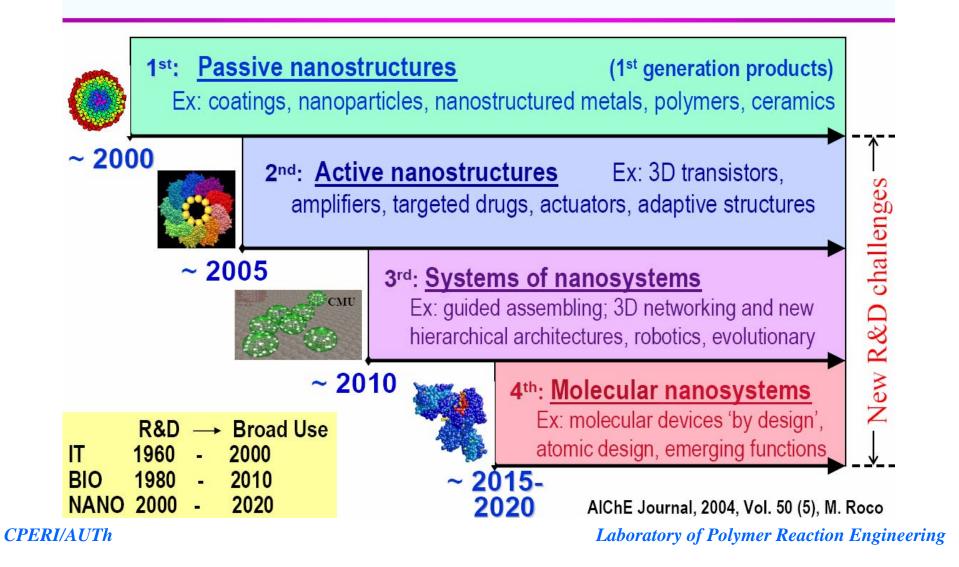

Today: Discovery-Based Science and Product Development

Future: Application-Based Problem Solving

CPERI/AUTh



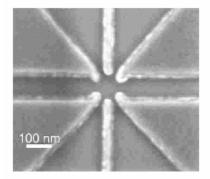
Defining Nanomanufacturing



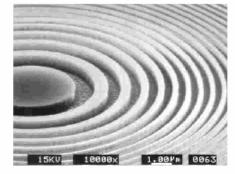
CPERI/AUTh

Four Generations of Products (2000-2020)

Four Generations of Products (200-2020): Timeline for beginning of industrial prototyping and nanotechnology commercialization


2.4 Research Directions in Atomically Precise Fabrication Methods

- 2.4.1 Atomically Precise Self-Assembly
- 2.4.2 Organic Synthesis
- 2.4.3 Scanning-Probe Based Nanofabrication
- 2.4.4 Hybrid Fabrication
- 2.4.5 Atomically Imprecise Fabrication Methods
- 2.4.6 Challenges in Atomically Precise Manufacturing
- 2.4.7 Challenges in Atomically Precise Components and Systems
- 2.4.8 Challenges in Fabrication Methods and Enablers



- Atomically Imprecise Fabrication Methods
 - Electron Beam Lithography
 - Block Copolymer Lithography
 - Nano-imprint Lithography
 - Dip-Pen Nanolithography
 - Dielectrophoretic Assembly
 - Plasmon Assisted Chemical Vapor Deposition (CVD)
 - Partially Ordered Chemical Self-Assembly

(a) CPERI/AUTh

Expamples of nanostructures produced using e-beam lithograpy. (a) Ti/AI gate structures for a SET device generated by e-beam lithograph and lift-off, & (b) A bragg-Fresnel lens for x-rays exposed in continuous path control mode and etched into Si.

- Challenges in Atomically Precise Manufacturing
 - Challenges for Bio-Based APM of Large, Complex, Functional Nanosystems
 - Modular Molecular Composite Nanosystems (MMCNs)
 - ✓ Challenges for Tip-Based APM in Process Development and Scale-up
 - ✓ Position of APM in Current Nanotechnologies
- Challenges in Atomically Precise Components and Systems
 - ✓ Functional Elements and Systems Enabled by APM
 - Application Development Opportunities for APT

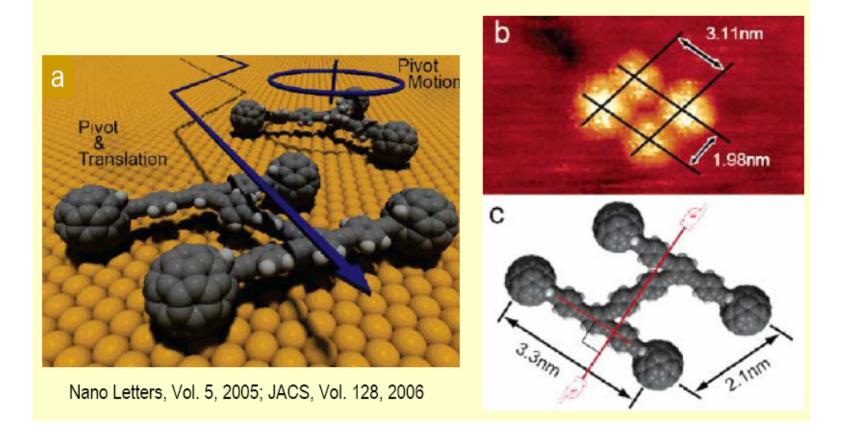
- Challenges in Fabrication Methods and Enablers
 - ✓ Atomically Precise Tools
 - Atomic Resolution Processes
 - Atomically Precise Components and Building Blocks
 - Modular Molecular Composite Nanosystems (MMCNs)
 - Structures, Devices, and Systems
 - Development of Scanning-Probe Based APM Systems
 - Development of Early-Generation Productive Nanosystems

Atomically Precise Structural Control

Aspect of atomic precision	Enabled features and applications
Precise internal structures	• Materials with novel properties (optical, piezoelectric, electronic) with extremely broad applications
	• Defect-free materials that achieve their ideal strength, conductivity, transparency
	• Absence of statistical fluctuations in dopants enabling scaling to smaller gate size
	• 3D bandgap engineering for systems of quantum wells, wires, and dots
	Systems of coupled spin centers for novel computer devices, quantum computing
Atomic-scale feature	High frequency devices, new sensors, high powerdensity mechanisms
size	• High density digital circuitry, memory (up to $\sim 10^{20}$ devices per cm ³)
Precise patterns of surface charge,	• Unique alignment of complementary surfaces for atomically precise self-assembly of complex, manycomponent structures
polarity, shape, and reactivity	• Precisely structured scanning-probe tips for atomically precise manufacturing, improved scanning probe microscopy
	• Molecular binding, sensing of specific biomolecules Stereospecific and chiral catalysis
Atomically smooth,	• Minimal scattering of electrons for low resistance nanowires, ideal electron optics
regular surfaces	• "Epitaxial" alignment of matching surfaces for atomically precise self-alignment, high-strength interfaces
	• Non-bonding, out-of-register surfaces for sliding interfaces with negligible static friction
Precisely identical	• System designs can exploit fine-tuning of properties
structures	System designs can exploit symmetries among identical components
	Reproducible behavior simplifies fault identification

Atomically Precise Manufacturing and Future Applications

Development Area	Horizon I	Horizon II	Horizon III
Atomically Precise Fabrication and Synthesis Methods	 Bio-based productive nanosystems (ribosomes, DNA polymerases) Atomically precise molecular selfassembly Tip-directed (STM, AFM) surface modification Advanced organic and inorganic synthesis 	 Artificial productive nanosystems in solvents Mechanically directed solutionphase synthesis Directed and conventional selfassembly Crystal growth on tip-built surface patterns Coupled-catalyst systems 	 Scalable productive subsystems in machine-phase environments Machine-phase synthesis of exotic structures Multi-scale assembly Single-product, high-throughput molecular assembly lines
Atomically Precise Components and Subsystems	 Biomolecules (DNA- and proteinbased objects) Surface structures formed by tipdirected operations Structural and functional nanoparticles, fibers, organic molecules, etc. 	 Composite structures of ceramics, metals, and semiconductors Tailored graphene, nanotube structures Intricate, 10-nm scale functional devices 	 Nearly reversible spintronic logic Microscale 1 MW/cm3 engines and motors Complex electro-mechanical subsystems Adaptive supermaterials
Atomically Precise Systems and Frameworks	 3D DNA frameworks, 1000 addressable binding sites Composite systems of the above, patterned by DNA-binding protein adapters Systems organized by tip-built surface patterns 	 Casings, "circuit boards" to support, link components 100-nm scale, 1000-component systems Molecular motors, actuators, controllers Digital logic systems 	 Complex systems of advanced components, micron to meter+ scale 100 GHz, 1 GByte, 1 µm-scale, sub-µW processors Ultra-light, super-strength, fracture-tough structures
Applications	 Multifunctional biosensors Anti-viral, -cancer agents 5-nm-scale logic elements Nano-enabled fuel cells and solar photovoltaics, High-value nanomaterials Artificial productive nanosystems 	 Artificial immune systems Post-silicon extension of Moore's Law growth Petabit RAM Quantum-wire solar photovoltaics Next-generation productive nanosystems 	 Artificial organ systems Exaflop laptop computers Efficient, integrated, solar-based fuel production Removal of greenhouse gases from atmosphere Manufacturing based on productive nanosystems



Representative Molecular Motors, Actuators, and Mechanical Devices

Device	Function
Nanotube	Motor with MWNT serving as a bearing for the rotor and as an electrical conductor
Nanomotor	
Molecular	Molecular actuator able to reversibly push apart two carbon nanotubes
Actuator	
Molecular Seal	Nanoseal that can be opened and closed at will to trap and release molecules – can be
	triggered and reversed by redox chemistry or changes in pH
Molecular	Nearly frictionless bearing made from two co-rotating nested nanotubes
Bearings	
Nanosprings	Lithographic methods were used to fabricate paddles or levers onto multiwall carbon
	nanotubes acting as torsional springs
Telescoping Arms	Manipulator capable of extending the inner nanotube in a MWNT
Biomotors	Molecular motors evolved by nature that perform a variety of mechanical tasks
"Nanocar"	Molecular Feringa motor rotates and pushes a protruding molecular group against a
	substrate, propelling a molecular chasis forward along an atomically flat surface,
	powered by 365 nm wavelength light
DNA-based robotic	DNA-based robot arm inserted into a 2D array substrate and verified by atomic force
arm	microscopy to be a functional nanomechanical device with a fixed frame of reference
Molecular carrier	A molecule called 9,10-dithioanthracene (DTA) with two "feet". Activated by heat or
	mechanical force, DTA will pull up one foot, put down the other, and walk in a line
	across a flat surface w/o tracks. Can carry molecular payloads of CO ₂ .
Molecular rack	A STM tip drives a single 1.8-nmdiameter pinion molecule functioning as a six-toothed
and pinion	wheel interlocked at the edge of a self-assembled molecular island acting as a rack. The rotation of the pinion molecule is monitored by a chemical tag on one cog.

Nano-cars driven by light-activated or thermally driven nanomotors (rolling molecules)

- 2.5 Nanotechnology-related Environmental, Health and Safety Research
 - 2.5.1 Environmental and Health Impact of Manufactured Nanomaterials
 - 2.5.2 Assessing the Potential Adverse Effects of Nanomaterials
 - 2.5.3 Threats Posed by Nanomaterials to Humans
 - 2.5.4 Risk Management Methods
 - 2.5.5 Regulatory Procedures
 - 2.5.6 Priority Research Needs in EHS for Nanoscale Materials
 - 2.5.7 Research Priorities in EHS

Priority EHS Research Needs for Engineered Nanoscale Materials

Instrumentation, Metrology, and Analytical Methods

- Develop methods to detect nanomaterials in biological matrices, the environment, and the workplace
- Understand how chemical and physical modifications affect the properties of nanomaterials
- Develop methods for standardizing assessment of particle size, size distribution, shape, structure, and surface area
- Develop certified reference materials for chemical and physical characterization of nanomaterials
- Develop methods to characterize a nanomaterial's spatio-chemical composition, purity, and heterogeneity

Nanomaterials and Human Health

Overarching Research Priority: Understand generalizable characteristics of nanomaterials in relation to toxicity in biological systems.

Broad Research Needs:

- Understand the absorption and transport of nanomaterials throughout the human body
- Develop methods to quantify and characterize exposure to nanomaterials and characterize nanomaterials in biological matrices
- Identify or develop appropriate in vitro and in vivo assays/models to predict in vivo human responses to nanomaterials exposure
- Understand the relationship between the properties of nanomaterials and uptake via the respiratory or digestive tracts or through the eyes or skin, and assess body burden
- Determine the mechanisms of interaction between nanomaterials and the body at the molecular, cellular, and tissular levels

Priority EHS Research Needs for Engineered Nanoscale Materials

Nanomaterials and the Environment

- Understand the effects of engineered nanomaterials in individuals of a species and the applicability of testing schemes to measure effects
- Understand environmental exposures through identification of principle sources of exposure and exposure routes
- Evaluate abiotic and ecosystem-wide effects
- Determine factors affecting the environmental transport of nanomaterials
- Understand the transformation of nanomaterials under different environmental conditions

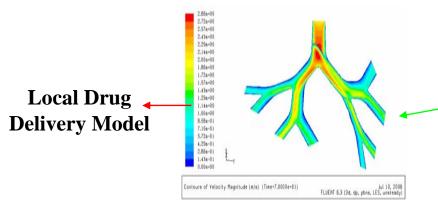
Human and Environmental Exposure Assessment

- Characterize exposures among workers
- Identify population groups and environments exposed to engineered nanoscale materials
- Characterize exposure to the general population from industrial processes and industrial and consumer products containing nanomaterials
- Characterize health of exposed populations and environments
- Understand workplace processes and factors that determine exposure to nanomaterials

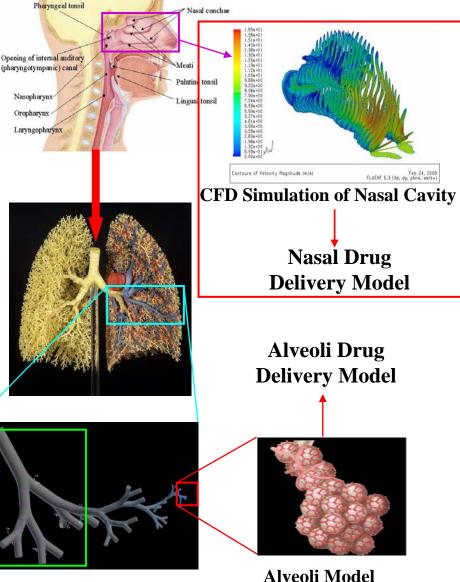
Risk Management Methods

Overarching Research Priority: Evaluate risk management approaches for identifying and addressing risks from nanomaterials

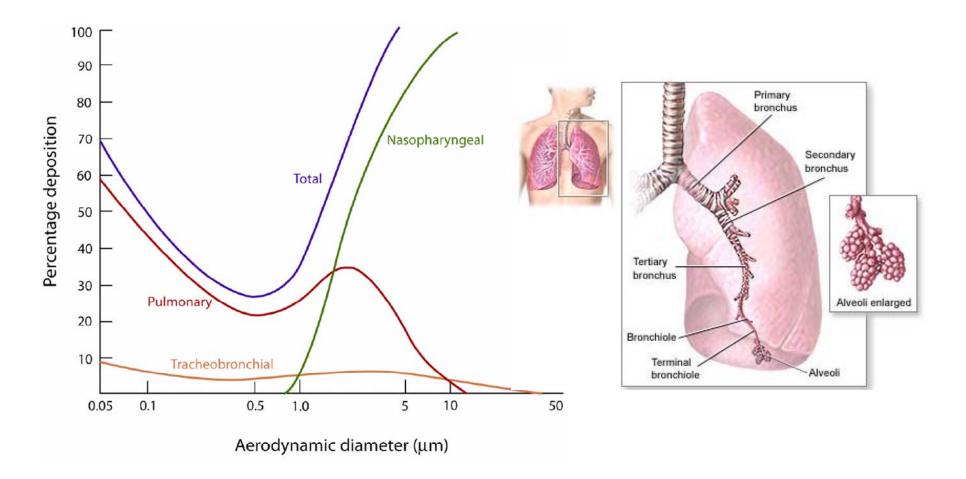
- Understand and develop best workplace practices, processes, and environmental exposure controls
- Examine product or material life cycle to inform risk reduction decisions
- Develop risk characterization information to determine and classify nanomaterials based on physical or chemical properties
- Develop nanomaterial-use and safety-incident trend information to help focus risk management efforts
- Develop specific two-way risk communication approaches and materials



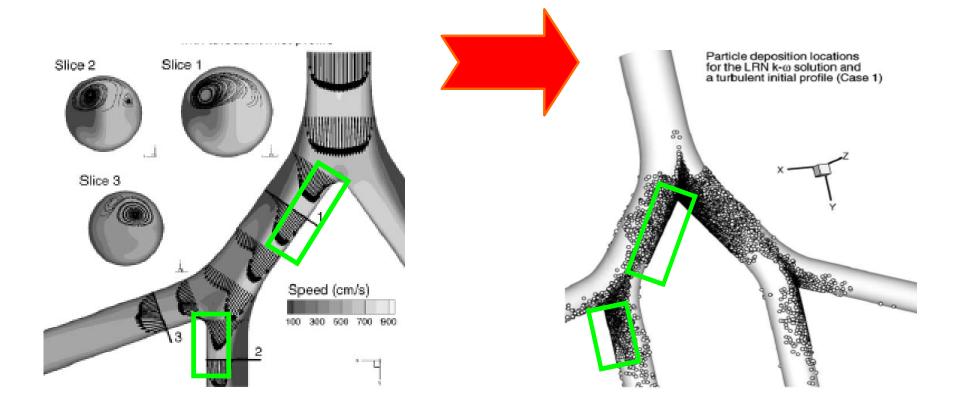
CPERI/AUTh


Drug Delivery in the Respiratory Tract

- A virtual physiological model of the respiratory system is being developed, including the nasal cavity, the pharyngotrachea, and the pulmonary tract (bronchi, bronchioli, and alveoli).
- CFD simulations of each respiratory compartment are performed and connected together through the inlet and outlet boundary conditions.
- Drug delivery models are developed providing the amount of drug released from deposited particles and droplets.



CFD Simulation of Pulmonary Block


Multi-block Pulmonary Model

Fractional deposition of inhaled particles.

CFD Simulation of Inhaled Particle Deposition

CFD Simulation of inhaled particle deposition

Future R&D Directions of NMP Programme

2.6 Nanotechnology Applications for Selective Industrial Sectors

- 2.6.1 Information and Communication Technologies
- 2.6.2 Life Sciences and Health Care
- 2.6.3 Energy: Conversion, Storage and Efficient Use
- 2.6.4 Micro- and Nanomanufacturing Systems
- 2.6.5 Fibers, Fabrics and Textiles
- 2.6.6 Environment (Air, Water and Soil)
- 2.6.7 Chemicals, Consumer and Household Goods
- 2.6.8 Food & Agro-Biotechnology
- 2.6.9 Construction and Housing
- 2.6.10 Transport: Aircraft and Automotives
- 2.6.11 Defense and Security

Reanotechnology Applications for Selective Industries

- Information and Communication Technologies
- Life Sciences and Health Care
- Energy: Conversion, Storage and Efficient Use
- Micro- and Nanomanufacturing Systems
- Fibers, Fabrics and Textiles
- Environment (Air, Water and Soil)
- Chemicals, Consumer and Household Goods
- Food & Agro-Biotechnology
- Construction and Housing
- Transport: Aircraft and Automotives
- Defense and Security

''Lead Market'' / Sector	Key R&D Targets	Technological Advancements	Applications & Time Frame	Relevant Industrial Sectors	Framework Actions
NanoMedicine – Diagnostics Theme 1	 Breakthrough improvements of factors 10 -1000 in diagnosis of major diseases 	 Molecular imaging agents, new in vivo imaging and in –vitro detection mechanisms, lab-on-a-chip based, integrated IVD devices Highly selective and sensitive imaging process 	 Early diagnosis of the major diseases such as cardiovascular, cancer, auto immune, neurodegenerative and infectious disease Markets Euro 5-10 bn, 5- 10 years 		 Regulations IPR agreements Societal acceptance as anything "nano" Reimbursement policy
NanoMedicine – Diagnostics Theme 2	• Construction of nano size structures used for combined imaging <u>and</u> therapy (drug release)	 Molecular imaging as a support and complement to therapy Release of drug on the targeted site and/or monitoring of therapy by imaging 	Combined diagnostics and therapy using unique nano size structures for both purposes		 Regulations IPR agreements Societal acceptance as anything "nano" Reimbursement policy
NanoMedicine - Nanopharmaceut ics Theme 1	 Construction of therapeutic nanoparticles (containing drugs especially macromolecular drugs : Biologicals, Foldamers and Nucleics) 	 Packaging high concentrations of macromolecular and other drugs in suitable vectors for in vivo delivery. 	 Major diseases. Greener drugs Market size From current €10bn to ~€100bn, 5-10 years 		 Regulations IPR agreements Societal acceptance as anything "nano" Reimbursement policy
NanoMedicine - Nanopharmaceut ics Theme 2	 Understanding & engineering Nanoparticle transport in mammalian systems. Targeting Immunogenicity & tolerance 	 Non-parenteral delivery Intracellular/transcellular transport. Oral, Nasal, (Blood Brain Barrier) and other delivery. Understanding of EPR 	 Increasing the market share of Biopharm's. Greener drugs Market size from current €10bn to ~ €100bn, 5-10years 		 Safety and toxicology within a regulated environment Reimbursement

Life Sciences and Health Care

''Lead Market'' / Sector	Key R&D Targets	Technological Advancements	Applications & Time Frame	Relevant Industrial Sectors	Framework Actions
Nanomedicine Nanopharmaceut icals Theme 3 shared with other groups	 Predicting self assembling systems Molecular recognition 	 Hardware/software Lack of networking / competition / industrial contact 	 Market massive Many applications also animal use reduction 10+years 		Bringing sciencePharmaSoftware and hardware together
NanoMedicine - Regenerative Medicine Using stem cell based therapies, regenerative small molecule / protein based drugs and scaffolding techniques to restore function to failing organs	 Small molecule / protein based regulation of Stem cell differentiation Robust and safe feeder systems for stem cell differentiation & survival Biomaterial construction to provide architecture suitable for stem cell seeding and guiding in situ tissue regeneration. 	 Stem cell differentiation Tolerance – Rejection of Allogenic graft tissue Unregulated differentiation of stem cells Reliable in-vitro / in-vivo modelling systems Robust manufacturing systems – purity, identity, potency and batch reproducibility 	 Neurodegenerative disease: - treatment of Stroke (€62bn), Parkinson's Disease(€23bn), Spinal cord injury (€37bn)and Multiple Sclerosis (€??bn), 10 years Cardiovascular disease: replacing cardiomyocytes in the treatment of heart failure (€0bn), 10 years Diabetes: insulin producing pancreatic cell formation (€125bn), 10 years 		 Regulations IPR agreements Societal acceptance
NanoMedicine - Regenerative Medicine Theme 2 Nano facilitated	 R&D target: Development of stem cell screening assays to confer more predictable information about the safety and efficacy of new therapeutics High throughput assays to 	• Existing assays not ideal for this	 Stem cell screening assays in predicting safety profiles of therapeutics. Market size small Facilitating technology 		Very few
drug discovery	High throughput assays to quantify protein-protein interactions	• Existing assays not ideal for this new drug target	• Facilitating technology impacting NCE discovery/ commercial value moderate,5 years		• very few
Anti-infective surfaces	• Safer hospital and home environments	• Current surfaces are often less safe than older ones	• Potential spread into many every day objects		Nano acceptance

Reference on the second storage and Efficient Us

"Lead Market" / Sector	Key R&D Targets	Technological Advancements	Applications & Time Frame	Relevant Industrial Sectors	Framework Actions
Energy	 PV cell and modules energy efficiency improvement (1% improvement bring 5-7 % cost reduction), higher stability and lifetime 70% efficiency of solar thermal collector 	 Wafer Si PV modules based on new Si feedstock (low defect, improved crystal growth, etc.) Polycristalline thin film (epitaxial growth and germination control, defect density) Thin films technologies (optical confinement, light trapping, plasmonic, nanocrystalline, interfaces) Understanding of defects, impurities, metastabilies, interface, layer structures Understanding of organic material behaviour for new generation PV cells Improve or new encapsulation approaches Advance concentrator concept Advanced nanosurfaces engineering for solar thermal collector Better efficiency of solar thermal collector with new nanomaterial and nanosurface treatment 	 Improvement based on today Si, 2-5 years New Si based materials and concepts, 10 years Prof of concept for modified deposition of thin film, 5 years Implementation of advanced concepts of management of solar spectrum tailoring in ultra thin solar cells 	• Environment	 Nanoscale characterisation Integral simulation integrating both optical and electrical competencies Standarization Life cycle analysis Integration in building
Energy	• Fuel cells	 Optimized electrodes, membranes, electrolytes Better understanding and efficiency of the catalytic system (reduce noble material use, development of advanced alloys) Development of ceramic nanopowder for SOFC Membrane based on organic inorganic nanocomposites Functionalized polymers with nanotexturing Electrode nano-structuring to improve oxygen/hydrogen conversion 	 Micro fuel cells for mobiles applications Automotive application Transport (sailing, airplane, etc.) Building applications (auxiliary power units) 	• Environment	 Nanoscale characterisation and simulation Standarization Safety and security Recyclability

Reference on the second storage and Efficient Us

"Lead Market" / Sector	Key R&D Targets	Technological Advancements	Applications & Time Frame	Relevant Industrial Sectors	Framework Actions
Energy	 Batteries and supercapacitors. 	 Optimized electrode material and electrolytes Anodes and cathodes with higher loading/discharge capacity based on nanomaterials Higher energy densities Introduction of nanomaterials for the separators, electrolytes, etc. Improvement of life and temperature stability. Nanotexturing, nanostructuring and architectures 	 Batteries for hybrid electric vehicles HEV (>3years) and Electric vehicles Thin film batteries for mobile electronic Supercapacitors for mobile application, energy recovery 	SecurityEnvironment	 Nanoscale characterisation and simulation Standarization Safety and security Recyclability
Energy	• Thermoelectricity	 Improvement of efficiency through new generation of nanomaterials New architectures based on nanostructuring, nanotexturing, nanolayering New nanostructured semiconductors with optimized boundary layer design Nanostructures analyzed in connection thermoelectica (quantum dots, super lattices, quantum wires, etc) New process to allow production of such devices 	 Components for car applications (>5- 7years) Human body application for intelligent textiles Portable electronics. 	• Environment	 Nanoscale characterisation and simulation Standarization Safety and security
Energy	• Biomass	 New conversion methods (catalyst, sensoric, etc) Nano optimization of bio resources. 	• Provision of fuel	• Environment	 Nanoscale characterisation Safety and security

Introduction to NANO*futures* Vision

Professor Costas Kiparissides

Department of Chemical Engineering, Aristotle University of Thessaloniki, & Centre for Research & Technology Hellas, Thessaloniki, Greece

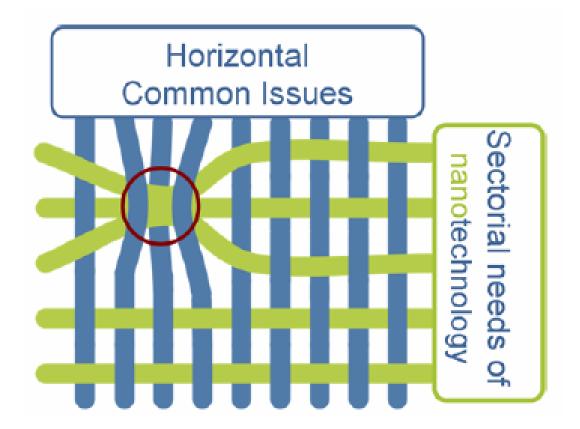

CPERI/AUTh

- The NANOfutures platform would become a European multi-sectorial, cross-ETP, integrating platform with the objective of connecting and establishing cooperation and representation of all relevant Technology Platforms that require nanotechnologies in their industrial sector and products.
- NANOfutures and its operative branch NANOfutures association will act as a "Nano-Hub" by linking JTIs, associations, ETPs with expert groups in a collaborative environment.

NANOfutures' Networking

CPERI/AUTh

- NANOfutures at its base will be open to industry, SMEs, NGOs, financial institution, research institution, universities and civil society with an involvement from Member States at national and regional level.
- It will be an environment where all these different entities would be able to interact and come out with a shared vision on nanotechnology futures.
- NANOfutures collaborate with the ETPs on the basis of a Memorandum of Understanding.



Schematic of NANOfutures Approach

- Working groups are organized under the 3 main topic areas addressed by NANOfutures: "technology", "regulation and standards" and "innovation".
- Ad hoc Groups can be constituted by the Steering Committee.
- Objectives of the horizontal working groups would be to present recommendations for strategic actions under each of these three main topics:

Research and development to promote nanotechnology ("technology"), including:

- Tools / equipment / measurement technology
- Infrastructure development
- ✓ Nanomaterials
- ✓ Nanostructuring
- Bottom-up manufacturing

Regulatory and standardization provisions for nanotechnology ("regulations and standards"), including:

- ✓ Safety
- ✓ Quality
- ✓ Performance

Decisional Structure

- Chair and two Co-chairs of the organization are elected by the Steering Committee
- Steering Committee
- National Platform Representatives Board

Membership and Participants

- Members are the ETPs representatives and representatives for any other groups or clusters identified of importance and not directly represented by any ETP.
- Participants to the working groups and other NANOfutures activities may be coming from the platforms and groups or on an individual basis as required.